CODE	COURSE NAME	CATEGORY	L	Τ	P	CREDIT
EET423	DIGITAL CONTROL SYSTEMS	PEC	2	1	0	3

Preamble: This course aims to provide a strong foundation in discrete domain modelling, analysis and design of digital controllers to meet performance requirements.

Prerequisite: EET201 Circuits and Networks, EET305 Signals and Systems, and EET302 Linear Control Systems

Course Outcomes : After the completion of the course the student will be able to:

CO 1	Describe the various control blocks and components of digital control systems.				
CO 2	Analyse sampled data systems in z-domain.				
CO 3	Design a digital controller/ compensator in frequency domain.				
CO 4	Design a digital controller/ compensator in time domain.				
CO 5	Apply state variable concepts to design controller for linear discrete time system.				

Mapping of course outcomes with program outcomes

$\left \right\rangle$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	-	-	-	-	-	-	-	-	2
CO 2	3	3	3	3	-	-	-	-	-	-	-	2
CO 3	3	3	3	3	2	- 1	-	-	-	-	-	3
CO 4	3	3	3	3	2	-	-	-	-	-	-	3
CO 5	3	3	3	3	-	-	-	-	-	-	-	3

Assessment Pattern:

Total Marks	CIE marks	ESE marks	ESE Duration
150	50	100	03 Hrs

Bloom's Category	Continuous	Assessment Tests	_ End Semester Examination		
	1	2			
Remember (K1)	10	10	10		
Understand (K2)	15	15	30		
Apply (K3)	25	25	50		
Analyse (K4)		2014			
Evaluate (K5)					
Create (K6)					

End Semester Examination Pattern : There will be two parts; Part A and Part B. **Part A** contains 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer all questions.

Part B contains 2 questions from each module of which student should answer any one. Each question carries 14 marks and can have maximum 2 sub-divisions.

Course Level Assessment Questions:

Course Outcome 1 (CO1)

- 1. Selection of sampling period and elements of discrete time systems (K2) (PO1, PO2).
- 2. Derivation of the transfer functions of discrete time systems (K3)(PO1, PO2, PO3, PO12).
- 3. Relations between continuous system poles and that in discrete domain (K2) (PO1, PO2).

Course Outcome 2 (CO2):

- 1. Derivation of pulse transfer function or response function of various system configurations (K3) (PO1, PO2, PO3, PO4, PO12).
- 2. Determination of time response of systems, error constant and steady state error (K2) (PO1, PO2).
- 3. Problems to analyse the response of systems (K3) (PO1, PO2, PO3, PO4, PO12).

Course Outcome 3(CO3):

- 1. Obtain the frequency response and design controller (K3) (PO1, PO2, PO3, PO4, PO5, PO12).
- 2. Design suitable compensator in frequency domain (K3) (PO1, PO2, PO3, PO4, PO5, PO12).
- 3. Problems related to compensator and controller design in frequency domain (K3) (PO1, PO2, PO3, PO4, PO5, PO12).

Course Outcome 4 (CO4):

- 1. Problems related to design controller from time response (K3) (PO1, PO2, PO3, PO4, PO5, PO12).
- 2. Design suitable compensator in time domain (K3) (PO1, PO2, PO3, PO4, PO5, PO12).
- 3. Problems related compensator and controller design in time domain (K3) (PO1, PO2, PO3, PO4, PO5, PO12).

Course Outcome 5 (CO5):

- 1. Problems related to modelling and analysis (stability, controllability and observability) of system in state space (K2) (PO1, PO2, PO3, PO4).
- 2. Design a state feedback controller and observer (K3) (PO1, PO2, PO3, PO4).
- 3. Problems to identify the response and solution of state equation (K2) (PO1, PO2, PO3, PO4).

Q] Re	P CO	Question Paper PAGES: DDE:	2
INC	anne.	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SEVENTH SEMESTER B.TECH DEGREE EXAMINATION MONTH & YEAR	
		Course Code: EET423 Course Name: DIGITAL CONTROL SYSTEMS	
[Max	Marks: 100 Duration: 3 Hours PART A	
		Answer all Questions. Each question carries 3 Marks	
1		Explain any four advantages of sampled data control systems.	
2		Identify and justify a suitable sampling frequency for the continuous time system 100	
		with transfer function $G(s) = \frac{100}{(s+1)(s+10)(s+100)}$	
3		Obtain the pulse transfer function for the given system.	
		$ \begin{array}{c} $	
4		Distinguish between type and order of a system.	
т 5		Explain the frequency domain specifications.	
6		Realize the digital compensator with transfer function $D(z) = \frac{2.3798z - 1.9387}{z - 0.5589}$	
7		Draw and explain the mapping between s- plane to z-plane for the constant frequer loci.	ıcy
8		What is dead beat response?	
9		Identify the discrete equivalent of the continuous time system $\dot{x} = Ax$ when sampling period is <i>T</i> s	the
10		Define controllability and observability.	
		PART B	
	A	swer any one full question from each module. Each question carries 14 Marks	
		Module 1	
11	a)		(6)
	b)	Determine the pulse transfer function of the system with transfer function $H(s) = \frac{3}{s(s+2)^2}$ if the sampling period is 0.1s. (ion (8)
12	a)	Derive the transfer function of a ZoH circuit.	(5)
		27-06	

b) Realize the digital filter $D(z) = \frac{2z-0.6}{z+0.5}$ by the three methods of direct, standard and ladder programming. (9)

Module 2

13 Obtain the pulse transfer function for the unity feedback system with $G_1(s) = \frac{1}{s}$, $G_2(s) = \frac{1}{(s+2)}$ and assume T=0.1s and hence determine the step response of the system. +(1) e(t) H(a) (14)Obtain the unit impulse response C(n) of the following feedback DT system with 14 a) $G(s) = \frac{1}{(s+3)}, \quad H(s) = \frac{1}{s},$ C(z) =Assume ideal sampling and T=1 ms. (9) b) Explain the factors on which the steady state error constants depend on? (5) Module 3 Design a suitable compensator for the unity feedback system with forward transfer 15 function $G(z) = \frac{0.01758 (z+0.8753)}{(z-1) (z-0.6703)}$, T = 0.1s, such that the phase margin of the system be atleast 45° at approximately 2 rad/sec and velocity error constant atleast 100s⁻¹.(14) 16 Consider feedback system forward the unity with function transfer $G(z) = \frac{K(0..01873z + 0.01752)}{z^2 - 1.8187z + 0.8187}$. Design a controller for the system such that the *w*-plane phase margin is 50°, gain margin is 10dB, and the static velocity error constant is 2 sec⁻¹. Assume a sampling period of 0.2sec. (14)Module 4 Design a suitable digital compensator for the unity feedback system with open loop 17 transfer function $G(s) = \frac{1}{s(s+4)}$ to meet the following specifications. Velocity error constant $K_v \ge 40 \text{ sec}^{-1}$, Damping factor $\zeta = 0.5$, Natural frequency $\omega_n = 4 \text{ rad/sec}$. Assume a sampling period of 0.1s (14)

Design a controller, by the method of Ragazzini, for the unity feedback system with open loop transfer function $G(z) = \frac{0.018201 (z+0.905)}{(z-1.105) (z-0.6703)}$, T = 0.1s to meet the following specifications. Damping factor $\zeta = 0.5$, Natural frequency $\omega_n = 2$ rad/sec and zero steady state error for unit step input. (14)

Module 5

19 Design a suitable controller for the system by selecting suitable poles. $x(k + 1) = \begin{bmatrix} 0.9128 & -0.008826 & 0.1574 \\ 0.09194 & 1.114 & -0.1662 \\ 0.07429 & -0.08753 & 0.6855 \end{bmatrix} x(k) + \begin{bmatrix} 0.104 \\ -0.00411 \\ 0.08707 \end{bmatrix} u(k),$ $y(k) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x(k)$ Formulate the control law that can perfectly track a step command. Since the output is directly available for measurement, design a reduced

the

Compute the unit step response of the system represented by x(k+1) = $\begin{bmatrix} 0\\ 0.8187 \end{bmatrix} x(k) + \begin{bmatrix} 0.09516\\ 0.09516 \end{bmatrix} u(k), \ y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$ assume the initial 0.9048 L0.08611 $x(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ state

to

realise

Module 1

order

(14)

(14)

observer

Basics of Digital Control

Basic digital control system- Mathematical modelling - sampling and reconstruction -Zero order and First order hold circuits - realisation of digital filters. Relation between transfer function and pulse transfer function - Mapping between s-domain and z-domain.

Syllabus

Module 2

Response Computation

Pulse transfer function of different configurations of systems- Modified z-transform-Time Response of discrete time system. Order and Type of a system Steady state error and Static error constants.

Module 3

Design of controller/Compensator in frequency domain

Bilinear transformation and sketching of frequency response - Digital P/PI/PID controller design based on frequency response - Digital compensator based on frequency response. Introduction to design and simulation using MATLAB (for demo/ assignment only and not to be included for examination).

Module 4

Design of controller/Compensator based on time response

Design of lag, lead and lag-lead compensator using root locus - Design of controllers and compensators by the method of Ragazzini- Dead beat response and deadbeat controller design.

Module 5

Modern control approach to digital control

Introduction to state space - state space modelling of discrete time SISO system -Computation of solution of state equation and state transition matrix.

Controllability, observability and stabilizability of discrete time systems- Loss of controllability and observability due to sampling. Digital controller and observer design state feedback – pole placement - full order observer - reduced order observer.

Text Book:

- 1. C. L. Philips, H. T. Nagle, Digital Control Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.
- 2. M. Gopal, Digital Control and State Variable Methods, Tata McGraw-Hill, 1997
- 3. Ogata K., Discrete-Time Control Systems, Pearson Education, Asia.

(7 hours)

(7 hours)

(6 hours)

controller.

(7 hours)

(10 hours)

20

References:

- 1. Benjamin C. Kuo, Digital Control Systems, 2/e, Saunders College Publishing, Philadelphia, 1992.
- 2. Constantine H. Houpis and Gary B. Lamont, Digital Control Systems Theory, Hardware Software, McGraw Hill Book Company, 1985.
- 3. Isermann R., Digital Control Systems, Fundamentals, Deterministic Control, V. I, 2/e, Springer Verlag, 1989.
- 4. Liegh J. R., Applied Digital Control, Rinchart & Winston Inc., New Delhi.
- 5. Åström, Karl J., and Björn Wittenmark, Computer-controlled systems: theory and design. Courier Corporation, 2013.

Course Contents and Lecture Schedule

No	UNI Topic RSI Y	No. of Lectures
1	Basics of Digital Control	(6 hours)
1.1	Basic digital control system- Examples - mathematical model - choice of	2
	sampling and reconstruction-ZOH and FOH	
1.2	Realisation of digital filters.	2
1.3	Relation between s and z - Mapping between s-domain and z-domain	2
2	Response Computation	(7 hours)
2.1	Pulse transfer function- Different configurations for the design	2
2.2	Time Response of discrete time system.	2
2.3	Steady state performance and error constants.	3
3	Design of controller/Compensator in frequency domain	(7 hours)
3.1	Digital P/PD/PI controller design	2
3.2	Digital PID controller design	1
3.3	Design of lag and lead compensator,	2
3.4	Design of lag-lead compensator.	1
3.5	Demo with MATLAB	1
4	Design of controller/Compensator based on time response	(7 hours)
4.1	Design of lag and lead compensator.	2
4.2	Design of lag-lead compensator.	1
4.3	Design based on method of Ragazzini.	2
4.4	Dead beat response design and deadbeat controller design.	2
5	Modern control approach to digital control	(10 hours)
5.1	Introduction to state space-	1
5.2	Computation of solution of state equation and state transition matrix.	2
	(examination questions can be limited to second order systems)	2
5.3	Controllability, Observability, and stabilizability of systems	2
	Loss of controllability and observability due to sampling.	1
5.5	State feedback controller based on pole placement.	2
5.6	Observer design based on pole placement.	2